Warum altern Lithium-Schwefel-Batterien noch zu schnell?

Warum altern Lithium-Schwefel-Batterien noch zu schnell?

Copyright Abbildung(en): shutterstock / Lizenzfreie Stockfoto-Nummer: 759061618

Mit der Elektromobilität nimmt auch die Suche nach Alternativen zu den klassischen Lithium-Ionen-Batterien Fahrt auf. Eine vielsprechende Kandidatin dafür ist die Lithium-Schwefel-Batterie. Um herauszufinden, warum dieser Typ Batterie seine maximal mögliche Kapazität und Lebensdauer noch nicht erreicht, wurde in der Physikalisch-Technischen Bundesanstalt (PTB) ein Messsystem entwickelt, das im laufenden Betrieb der Batterie eingesetzt werden kann.

Damit wurde ein möglicher Grund für die unerwünschte Alterung ermittelt: Polysulfide, kettenförmige Moleküle aus Lithium und Schwefel, die sich am Minuspol anreichern, sodass immer weniger Lithium und Schwefel für die Energiespeicherung zur Verfügung steht. Die Bewegung und Anreicherung der Polysulfide konnte mit zwei hochmodernen Analysemethoden mit Röntgenstrahlung der Synchrotronstrahlungsquelle BESSY II in Berlin molekülspezifisch beobachtet und dem jeweiligen Ladezustand zugeordnet werden.

Die Messungen lassen den Schluss zu, dass die Entwicklung und Verwendung von polysulfid-undurchlässigen Separatoren in solchen Batterien die Lebensdauer erhöhen können. Die Ergebnisse sind im Journal of Materials Chemistry A veröffentlicht.

Leistungsfähigen, wiederaufladbaren Batterien (Akkumulatoren, kurz Akkus) kommt eine Schlüsselrolle im Rahmen der Energiewende zu, z. B. als stationäre Zwischenspeicher für Energie aus erneuerbaren Energiequellen oder in Elektroautos zur Verdrängung fossiler Energieträger. Für diese Anwendungsgebiete kommen die derzeitigen Lithium-Ionen-Batterien hinsichtlich Kapazität und Lebensdauer an ihre Grenzen. Außerdem werden oft teure und toxische Rohstoffe eingesetzt, die teilweise unter fragwürdigen Bedingungen abgebaut werden.

Warum Schwefel eine gute Alternative wäre

Deshalb werden alternative, umweltfreundliche Batterietypen mit höherer Kapazität und längerer Lebensdauer benötigt, zu denen potenziell die Lithium-Schwefel-Batterie gehört. Eine solche Batteriezelle mit Lithium als Minuspol(Anoden-)Material und Schwefel als Pluspol(Kathoden)-Material hat mehrere Vorteile: Schwefel ist preiswert, umweltfreundlich und reichlich vorhanden. Und die theoretische Energiedichte einer solchen Zelle liegt aufgrund der leichten Elemente bei bis zu 2500 Wh/kg, was signifikant höher ist als bei Lithium-Ionen-Batterien. Doch bisher konnte nur rund ein Viertel der theoretisch erreichbaren Energiedichte realisiert werden, und die Batterien dieser Art altern zu schnell, sodass die von der Industrie geforderten mindestens 1000 Ladezyklen derzeit noch nicht erreicht werden können.

Auf der Suche nach Gründen für den schnellen Rückgang der Kapazität standen die Polysulfide im Fokus. Polysulfide sind kettenförmige Moleküle, die aus Lithium und Schwefel bestehen, also genau jenen Elementen, die für die Energiespeicherung in diesem Batterietyp zuständig sind. Wenn sich die Polysulfide im Elektrolyten lösen, so geht der Anteil Lithium und Schwefel für die Energiespeicherung verloren, und folglich sinkt die Kapazität. Sie bilden sich während des Batteriebetriebs am Pluspol, lösen sich im Elektrolyten und wandern zum Minuspol.

Lithium-Schwefel-Batterie-E-Auto
PTB

Beim Wiederaufladen müssen sie an den Pluspol zurückwandern; aber das klappt nicht vollständig. Die Polysulfide reichern sich mit zunehmender Zyklenzahl am Minuspol an. Am Pluspol steht somit immer weniger Schwefel zur Verfügung, was sich in abnehmender Kapazität niederschlägt. Mit dem in der PTB entwickelten Verfahren konnte jetzt erstmals molekülspezifisch erfasst werden, bei welchem Lade- und Entladezustand sich wie viele Polysulfide im Elektrolyten an den beiden Polen befinden. Dazu setzten die Wissenschaftler an der Synchrotronstrahlungsquelle BESSY II in Berlin die Nahkanten-Absorptionsfeinstruktur-Analyse (NEXAFS) sowie referenzprobenfreie Quantifizierung mit Röntgenfluoreszenzanalyse (RFA) für das Element Schwefel ein. Die Verfahren sind sehr genau, rückführbar auf das Internationale Einheitensystem (SI) und kommen ohne Referenzmaterial aus.

Neue Strategien für das Zelldesign erforderlich

Neben dem prozentualen Verlust des kathodischen (also Pluspol-) Aktivmaterials Schwefel für verschiedene Ladezustände konnten die Wissenschaftler die Veränderung der Moleküllänge der Polysulfide bestimmen, die sowohl Löslichkeit als auch Reaktivität maßgeblich beeinflusst. Durch die Untersuchung an beiden Elektrodenseiten konnte der Shuttle-Effekt, also die Bewegung der Polysulfide zwischen den Elektroden, und insbesondere die Akkumulation am Minuspol für fortschreitende Zyklenzahl beobachtet werden. Diese zeitaufgelösten Messungen im laufenden Betrieb der Zelle (Operando-Modus) ermöglichen eine Zuordnung von Veränderungen auf atomarer Ebene zu den elektrischen Eigenschaften der Batterie.

Die Messungen ergaben, dass nicht primär die Bildung der Polysulfide, sondern ihre Bewegung und Ablagerung am Minuspol für den Rückgang der Zellkapazität verantwortlich ist. Dies führt zu neuen Strategien im Zelldesign, zum Beispiel zum Einsatz von polysulfid-undurchlässigen Separatoren.

Quelle: Physikalisch-Technische Bundesanstalt – Pressemitteilung vom 24.06.2021

Über den Autor

Michael ist freier Autor und hat stets das große Ganze im Blick: Darum schreibt er nicht nur über E-Autos, sondern auch andere Arten fossilfreier Mobilität sowie über erneuerbare Energien und Nachhaltigkeit im Allgemeinen.

Newsletter

Erhalte jeden Montag, Mittwoch und Freitag aktuelle Themen wie „Warum altern Lithium-Schwefel-Batterien noch zu schnell?“ sowie die neusten Informationen aus der Welt der Elektromobilität kostenfrei direkt ins eigene Postfach. Kuratiert aus einer Vielzahl von Webseiten und Blogs.
Ja, ich möchte den gratis E-Mail-Newsletter von Elektroauto-News.net abonnieren. Die Datenschutzerklärung habe ich gelesen. Die Einwilligung zum Versand des Newsletters kann jederzeit widerrufen werden. Hierzu reicht es auf den Abmeldelink zu klicken, welcher sich in jedem Newsletter befindet.

Fakten & MeinungenDiskutiere mit der E-Community

Abonnieren
Benachrichtige mich bei
2 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Die Forschungen dürften sich weiter verstärken, da die Autoindustrie zunehmend Bedarf an günstigen und leichten Batterien hat, also werden sich E-Fahrzeuge in Preis, Reichweite, Gewicht und Ladezeit noch schneller den Verbrennern annähern – und das Ende der Verbrenner kommt früher.

Batterieforschung ist nicht für Ungeduldige, aber es ist absehbar, dass schon Ende des Jahrzehnts oder früher der Gleichstand zwischen batterie-elektrisch und Verbrennern erreicht sein dürfte.

Bisher gab es ja auch schon Fortschritte in der Batterieentwicklung. Was jetzt grundlegend die Situation ändert, ist der Einsatz der Batterien im Automobilsektor. Mehrere tausend Euro pro Fahrzeug multipliziert mit vielen Millionen Fahrzeugen pro Jahr ergibt ein Marktvolumen, das viele große Player auf den Plan ruft. Zudem fließen vermehrt staatliche Fördergelder.

Natürlich sind Batterien keine Mikrochips, demzufolge sind keine drastischen und schnellen Änderungen bei Preis und Leistungsfähigkeit zu erwarten. Jeweils eine Verbesserung um den Faktor zwei würde aber schon ohne jegliche Umweltprämie oder dergleichen bereits das rein wirtschaftliche Aus für die Verbrennertechnologie bedeuten.

Nicht jeder „Durchbruch“ wird es aus dem Labor in die Fertigung schaffen, die meisten werden scheitern. Aber es gibt eben sehr viele Ansätze. Und, da das richtig große Geld winkt, sorgt der Wettbewerb für maximales Tempo. Ich lehne mich also gespannt zurück und genieße die Show…

Diese News könnten dich auch interessieren:

Werk Wörth von Mercedes-Benz wird Zentrum für emissionsfreie LKW
Fiat-500-Wettbewerb: Strom sparen lohnt sich
Neuer Plug-in-Hybrid der Mercedes S-Klasse ab sofort bestellbar
2
0
Would love your thoughts, please comment.x
()
x

Deine Anmeldung zum Newsletter:
Ein letzter Schritt fehlt noch.

Vielen Dank für deine Anmeldung zum Newsletter von Elektroauto-News. Du erhältst in Kürze eine E-Mail, in der sich ein Link zur Freischaltung deiner E-Mail-Adresse befindet. Erst durch die Bestätigung des Links dürfen wir deine E-Mail-Adresse zum Versand unseres Newsletter freischalten (Double-Opt-In).